
AN EXPERT SYSTEM FOR P/IING AND SCHEDULING
=.__ _,

IN A TELEROB_RONMENT

(CONTRAC_G-1-763) .
i_ii:i /: A_' /

Final

f

i } :'_ l/ 4 _:-

Submitted To: Automation Re_ch

N_A-Langley _enter

Hampton, VA

Funding Period:

Submitted By:

May 18, 1987 _ 28, 1991
,oy

r,
M

Celestine A.

Eui H. Park,

Department of

North Carolina _

Greensboro,

University



AN EXPERT SYSTEM FOR PLANNING AND SCHEDULING

IN A TELEROBOTIC ENVIRONMENT

(CONTRACT #: NAG-I-763)

Final Report

Submitted To: Automation Research Branch

NASA-Langley Research Center

Hampton, VA 23665-5225

Funding Period: May 18, 1987 February 28, 1991

Submitted By: Celestine A. Ntuen, Ph.D.

Eui H. Park, Ph.D.

Department of Industrial Engineering

North Carolina A&T State University

Greensboro, NC 27411

June 1991



i

TABLE OF CONTENTS

LIST OF FIGURES iv

LIST OF EXHIBITS vi

LIST OF TABLES vii

ABSTRACT viii

CHAPTER
PAGE

lo INTRODUCTION ..................... 1

i.i Problem Environment ................ 1

1.2 Outline of Report .................. 5

• LITERATURE SURVEY ON PLANNING AND SCHEDULING TECHNIQUES

FOR POSSIBLE TECHNOLOGY TRANSFER INTO TELEROBOTIC

APPLICATIONS ............... 6

2.1 A Review of Work In Telerobotics ......... 6
62.1.1 Control ..................

2.1.2 Supervision ................ 6
2.1.3 Distributed Problem Solving ......... 7

2.1.4 Monitoring .................. 8

2.1.5 Communication ................ 8

2.2 Prototype Systems Developed For Telerobotic
• . , . . . . . 9

Applications2.2.1TRSS "- Teleoperator/Robotic System

Simulation ............... 9

2.1.2 Supervision ......... 9
2.2.2 DAISIE - Distributed Artificial

Intelligent System For Interfacing with

the Environment ........... 9

2.2.3 TART Teleoperator and Robotic Testbed . . I0

2.2.4 LART Language-Aided Robotic Teleoperation
i0Systems .............

2.2.5 TOL.O Teleoperator-Oriented Language of the

Object-Level ............ ii
2.2.6 MSM Master-Slave'Manipulator ..... ii

2.3 Planning and Scheduling Concept for Telerobotics . 12

2.3.1 Concepts ......... 12

2.3.2 Some Planning and Scheduling'Techniques • 13

2.3.3 Plan Evaluation for Telerobotic

Application ............... 15

•

2.4 Summary ...................... 18

GRAPHICS STANDARDS ................... 19

3.1 Introduction ................... 19



3.2 The Expert System Understanding The Role of Humans
in Teleoperated Tasks ............... 19

3.3 The Knowledge-Based System Understanding The Task
Environment and Knowledge Required To Accomplish
Task ....................... 21

3.4 Distributed Problem-Solving Environment ...... 23

3.5 The Learning System Understanding The Cognitive
Requirements In a Telerobotic System ....... 24

253.6 Summary .....................

. TASK PLANNING IN A TELEROBOTIC DOMAIN ......... 27

4.1 Overview of The Planning Method Used ....... 27

4.2 Plan Formalism For A Telerobotic Domain ...... 29

4.3 TOP: The Task Oriented Planner For Telerobotic

Application .................... 31

4.3.1 TOP Concept ................ 32

4.3.2 TOP Structure ............... 32

4.4 Task Assignment in TOP ........... 34

4.4.1 The Teleoperator Sklll Matrix TSM ..... 34

4.4.2 Task Assignment Model Using The Fuzzy TSM . 35

4.5 Summary ..................... 42

. JOB SCHEDULING IN A TELEROBOTIC SYSTEM ......... 44

5.1 Teleoperation As A Constraint-Directed

Scheduling Problem ................ 44

5.2 The Scheduling Algorithm ............. 45

5.3 Summary ...................... 49

. MODEL APPLICATIONS AND VERIFICATIONS .......... 55

6.1 The Application Environment ............ 55

6.2 Aircraft Turnaround Function ......... 55

6.2.1 Planning Aircraft Turnaround Function . . . 56

6.2.2 Scheduling Aircraft Turnaround Function . . 61
6.2.3 Robot Execution of Turnaround Function . . . 66

6.3 A Microblock World Teleoperation ......... 70
6.3.1 Microblock Simulation Results ....... 71

6.4 Summary ...................... 84

. PROJECT SUMMARY .................... 90

7.1 Accomplishment .................. 90



7.2 Further Work ................... 92

REFERENCES ......................... 96

APPENDIX .......................... 102



iv

LIST OF FIGURES

FIGURE PAGE

1. A Conceptualization of the Telerobotic Environment

Adapted from Sheridan: Models of Controlled Process

Internal of Human, Computer, Command Language and

Display ........................ 2

2. Elements of a Teleoperated System ........... 3

3. A Conceptual Model Environment For Planning And

Scheduling In A Telerobotic System .......... 20

4. TOP Architecture .................... 33

5. An Example Task Tree .................. 38

6. The Computational Procedure for Fuzzy Assignment .... 43

7. An Example Partial Schedule Generator From A Plan

Graph ......................... 46

8A. Beginning Schedule ................... 50

8B. A Schedule with Tasks T1 and T3 Completed at

8C.

9A.

9B.

i0.

ii.

12.

13.

14.

15.

16.

17.

18.

T1 < T3 ......................... 50

A Schedule Showing a Dynamic Availability of Resource #2 .51

The Development of R2 in Task t4 Reduce, t c to t .... 52

The Development of R2 in Task t5 Reduces t5 to t** .... 52

A Possible Minimum Time Schedule with No Inserted Idle

Time t c Min < t c .................... 53

An Example of Plan Generation ............. 58

A Tree-Like Task System From TOP ............. 60

TOP Simulator Cell .................... 67

Graph Of Task Time ................... 81

Graph Of Task Time ................... 82

Graph Of Task Time .................. 83

Graph Of Task Time ................... 84

Frequency Plot For Assignment Profile ......... 85



19. Frequency Plot For Assignment Profile ......... 86

20. Frequency Plot For Assignment Profile ......... 87

21. Frequency Plot For Assignment Profile ......... 88

A-I Context Definition Blocks for a DPN .......... 104

A-2 An Example of Plan Deliberation During Task Execution . 106

A-3 A Reduced State Space Deliberate Plan Network ..... 108

A-4 An Example DPN with Incomplete Goal Attainment Due To
Existence of False Predicates in Nodes B and H ..... 109

A-5 An Example Solution Graph With Subgoal Failure With All
Constraints Satisfied ................. ii0



EXHIBIT

i.

2.

3.

4.

vi

LIST OF EXHIBITS

PAGE

Task - Resource Matrix ................. 36

Resource-Skill Inventory Matrix ............ 36

Teleoperator Skill Matrix (TSM) ............ 37

Aircraft Work Stations ................. 59



LIST OF TABLES

TABLE

i.

2.

3.

4.

5.

6.

7.

8.

•

i0.

ii.

vii

PAGE

A List of Possible Configurations ........... 57

Scheduling List For Each Job (Time in Minutes) ..... 65

Scheduling List For Each Personnel (Time in Minutes) . . 66

Remove Block-2 From Block-I .............. 73

Task: Put Block-i On Table ............... 74

Task: Put Block-2 On Block-I .............. 75

Task: Put Block-3 On Block-2 .............. 76

Assignment Frequency Table For Task: Remove Block-2 From

Block-i ........................ 77

Assignment Frequency Table For Task: Put Block-i On

Table ......................... 78

Assignment Frequency Table For Task: Put Block-2 On

Block-i ........................ 79

Assignment Frequency Table For Task: Put Block-3 On

Block-2 ........................ 80



viii

ABSTRACT

Planning and scheduling in a telerobot system are tasks which

are complex because of the human-machine requirements that must be

addressed. In a human system, these issues can well be approached

from behavioral models. On the other hand, robot systems can be

planned algorithmically by exploiting the available computational

techniques.

A teleoperation, i.e; the use of telerobots for remote

operations requires direct cooperation between the agents involved

in the system. Thus, a methodology to achieve such cooperation

must be developed. In this project, we have developed a knowledge

based approach to assigning tasks to multi-agents working

cooperatively in jobs that require a telerobot in the loop. The

generality of our approach allows for such a concept to be applied

in a non-teleoperational domain.

Our planning architecture known as TOP (an acronym for Task

Oriented Planner) uses the principle of flow mechanism and the

concept of planning by deliberation to preserve and use knowledge

about a particular task. The TOP is an open ended architecture

developed with a NEXPERT TM expert system shell and its knowledge

organization allows for indirect consultation at various levels of

task abstraction.

Considering the fact that a telerobot operates in a hostile

and non-structured environment, task scheduling should respond to

environmental changes. We have developed a general heuristic for

scheduling jobs with the TOP system. Our technique is not to

optimize a given scheduling criterion as in classical job and/or

flow shop problems. For a teleoperation job schedule, criteria are

situation dependent. A criterion selection is fuzzily embedded in

the task-skill matrix computation. However, we have emphasized

goal achievement with minimum expected risk to the human operator.



CHAPTER I

INTRODUCTION

1.1 Problem Environment

A telerobotic system consists of the use of robots or general

manipulators, and humans for remote operations. Such operations

are generally referred to as teleoperations [61].

A teleoperated work environment is an example of a human-

machine system. Thus, for such an environment to be useful for

what it is intended for, the following characteristics must be

available:

1)

2)

3)

The system operators or

symbiotically, at least at

abstraction [6,54].

agents must cooperate

the highest level of

The system must acquire an explicit mode of

communication. An explicit communication mode is

dialogue based which can provide direct interaction

through devices such as a joystick, mouse, visual

displays, voice synthesizers, etc. [63,69].

The teleoperator must have sensors and actuators, perform
useful work on its environment, and be controlled

remotely by other operators [10,15,21].

These three general characteristics are conceptualized by

Sheridan [60] as shown in Fig. i. Ntuen and Park [44] have also

presented a general architecture which describes the environment at

two levels: functional and operational levels [See Fig. 2].

At the functional level, the telerobotic system requires: a)

a control model for execution of tasks; b) a supervisory model for

issuing directives; c) a monitoring model for diagnosis and

maintenance of system operations; d) a planning model for managing

constraints and scheduling tasks; and e) a distributed problem

solving model for communication between models.



..I c/)

m "O

c .)..)
g) m

,.=-

Era.

oE
,0.. 0

.DO
0

•).., g:_

2



i

i
i

o

I -F

I

I ""!

blJ
t--
Z

I I

I
o I
U

I

0

o
._- t-
O •

"10

oO
Z

u

i,



4

The operational level is the highest level of the teleoperated

system. At this level, mental models can be used to represent task

scripts abstractly. The issue of the roles the human(s) and

machine(s) should play in the symbiont system is addressed

conceptually.

As described above, classical modeling tools used in robot

control and manipulation fall short of addressing a telerobotic

environment. This is so since some degree of human operations is

required, and the robots act as aids to the operator. Coiffet

[8] listed the possible areas of modeling complexities as follows:

I. The acquisition and presentation of relevant and easily

interpretable information to the operator. Examples of this

include the presentation of the stereoscopic view of a

gripper, or the indication of the forces existing between two

components that are to be fitted together in an assembly

process.

2. The automatic monitoring of an operator's movements and the

provisions of starting signals which activate the interruption

of transmission from master to slave when the precision of the

operator is failing. This function is also concerned with a

system's self-testing facilities.

3. The automation of various functions so freeing the operator.

These might include the gripping of objects when a device is

in an automatic mode, or the maintenance of the horizontal

when grippers are used to handle fluids, irrespective of the

motion associated with their handling.

Since all three problems cannot be solved in a single model,

we have chosen to address problems 1 and 3. Our approach is to

utilize rule-based expert system technologies for planning and

scheduling in a telerobot environment. We recognize that using an

expert system will compensate for the most difficult problems

associated with the mathematics of robotic control [See, e.g.,

3,4,17]. Our expert system is generic and allows for
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generalizations in the world of domain-specific planning. This

report further highlights the development of dynamic planner by

incorporating Monte Carlo simulation techniques into situations

with uncertainties.

1.2 Outline of Report

This project report is organized as follows:

Chapter 2 presents a literature survey on planning and

scheduling techniques for possible technology transfer into

telerobotic applications.

Chapter 3 presents the development of a conceptual model for

planning in a telerobotic system. The concept presented is

both generic and open-ended for understanding knowledge

requirement in modeling teleoperation.

Chapter 4 presents a task planning technique for a telerobotic

environment. The methodology lies primarily on task

consideration and resource needs in planning a multi-agent

system.

Chapter 5 presents a model for scheduling resources in a

telerobotic system. A heuristic algorithm that employs

results from the planning is discussed.

Chapter 6 presents some sample applications in aircraft

turnaround functions and simple block-world assembly problems

respectively.

Chapter 7 concludes the project report with a summary of what

has been accomplished and a discussion of the directions for

future work in planning multiagent systems with human-machine
interaction in mind.



CHAPTER 2

LITERATURE SURVEY ON PLANNING AND SCHEDULING

TECHNIQUES FOR POSSIBLE TECHNOLOGY TRANSFER INTO
TELEROBOTICS APPLICATION

2.1 A Review of Work In Telerobotics

The framework of research works in telerobotic systems can be

summarized from Sheridan's [60] metaphorical statement:

"A telerobot is a teleoperator which also embodies

understanding, memory, and decision capability so that the

human operator, as a supervisor, may communicate to its high-

level goals and contingencies and receive high-level state

information, while the machine executes low level functions

and pieces of the task semi-autonomously by closing the loop

through its own effectors, sensors and internal computer."

The above observation presents the stratification in research

methodologies for telerobotic environments. In summary, research

in telerobotics has evolved in at least five directions as follows:

2.1.1 Control

This involves changing the teleoperator actions according to

some emerging plans. A survey in this direction can be seen in

Antsaklis [3], Martin & Kuban [37], Saridis [57], Yang et al [72],

and Norcross [42].

2.1.2 supervision

A supervisory control system is basically a feedback system

with the capability to monitor the actual operating state of the

system and to keep it within the specified target domain

[13,15,23], to coordinate disjunctive efforts [7], to supervise

learning such as using a joystick to train the robot [15,22,26,62],
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and to manage strategic decisions such as giving directives and

overriding policies or priorities [2,24,43,44].

2.1.3 Distributed Problem Solving

Distributed problem solving is an issue currently being

addressed in telerobotic system research. Distributed problem

solving is concerned with hierarchical and parallel problem solving

at the system level using global models of abstractions

[10,21,34,49]. The idea is that if several computers or

teleoperators can be delegated to do tasks which they can do best,

then a significant amount of problem solving time can be realized.

Fundamental works in this area are discussed by Koivo and Bekey

[31], Silverman [63], Smith and Davis [64].

2.1.4 Monitoring

Monitoring a symbiont system is more difficult than monitoring

an ordinary single-agent system. This can be explained from the

fact that each agent has behavior which may be significantly

different from these of the other agents or the overall system's

goal(s) and intention(s). Research suggestions and directions in

system monitoring have focused primarily in the area of real-time

observation [29], fault diagnosis and inspection [24,54], parameter

evaluation and estimation [11,32,36], and performance auditing

[35,41].
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2.1.5 Communication

Communication research in a human-machine system seems to

emphasize a mixture of implicit and explicit models of

communication.

Explicit communication is a dialogue-based communication that

requires the human to communicate with the task allocator using an

input device such as a keyboard, mouse, or lightpen, or by using

his voice, buttons, or switches. Although this type of

communication has the advantage of minimizing misunderstanding in

intent between the human and the task allocator, it is

unfortunately costly in terms of taking up more of the human's time

due to the human having to stop performing tasks to communicate

with the task allocator [24,48].

Implicit communication is a model-based communication in which

the computer uses models of the human to predict what the human is

likely to do next. From this prediction, the computer attends to

tasks which are likely to be neglected by the human. Implicit

communication is typically used when the human performs the

majority of the tasks. This type of communication has the

advantage of allowing the human to execute tasks without having to

communicate with the task allocator. The disadvantage of this

method is that it requires the development of an appropriate

predictive model of human task-selection performance which is

usually difficult to build and results in an imperfect model of the

human.
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are dedicated to teleoperated functions.

9

Prototype Systems Developed For Telerobotic Applications

Several test-bed systems have evolved since the 1980's which

Among these are the

following:

2.2.1 TRSS - Teleoperator/Robotic System Simulation

TRSS [26,48,49] is a modular software simulation coupled to a

reconfigurable teleoperator control station. The module resides in

a relatively powerful processor that can coordinate communication

from other processors and devices. The module deals with

"strategic" task planning, database management of the machine's

concept of the environment,

teleoperator control station,

"tactical" controllers.

supervisory monitoring of the

and the interfaces to various

2.2.2 DAISIE - Distributed Artificially Intelligent System

for Interfacing with the Environment [49]

This is implemented at NASA Langley as a system that divides

the control of a sensor/cognition/actuator system into two major

hierarchical levels. These levels are termed strategic and

tactical. The "tactical" level refers to local, specific control

of a particular sensor/actuator grouping (preceptor/proprioceptive

actuator). "Strategic" refers to a control level with a global

view of all tactile units and their actions. DAISIE implements the

concept of using various degrees of abstraction at different goal

levels.

The DAISIE system exploits distributed processing within the



limitations of the available hardware.

manipulation, vision, end-effector control,

i0

Functions such as

and force-torque

sensing are each run by separate processors. The higher

"intelligent" levels are also distributed in separate processors.

2.2.3 TART (Teleoperator and Robotic Testbed)

Harrison and Orlando [26] discussed the use of TART

implemented on the VAX 11-750 in ISRL (The Intelligent System

Research Laboratory). TART is a layered driven model in which each

successive layer provides additional value to the system.

Currently, five layers are implemented: i) user, 2) system, 3)

scheduling, 4) communication and 5) servo/sensor. The lowest four

layers of TART are designed for error-checking required by user

applications. Users are encouraged to use only the TART-defined

system level mechanisms for modification of data structures.

2.2.4 LART (Language-Aided Robotic Teleoperation Systems)

LARTS [58,59] incorporates two sets of teleoperational

languages with a master-slave manipulator. Both spatial and

temporal autonomy which support the operator are provided by the

languages. The authors of LARTS focus on the structuredness in

teleoperational task execution. For example, there may exist many

constrained motions in the handling of objects. Elementary tasks,

such as pick, place, remove, grasp and so on which are executed

repeatedly are examples of teleoperational task execution.
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2.2.5 TOL.O (Teleoperator-Oriented Language of the object-

Level)

To cope with the burden of the operator having to teach the

actual environmental data in the program, a special teaching method

designed for teleoperation shows a synopsis of the method [58,59].

TOL.O is designed to specify elementary task motions of

teleoperation. TOL.O instruction yields the program for the task.

The programming burden for the operator is therefore reduced.

Specifications in TOL.O are as follows:

1) Operator declares aim of task using TOL.O instruction.

2) Instruction is automatically expanded into the motion-

level task procedures.

3) Teaching-executing systems interprets the draft program

steps one by one and prompts the operator to do the

necessary motions for the task execution and teaching.

4) Operator executes the task by operating the masterslave

manipulator and signals the system, using a button, that

the motion is completed.

5) At the end of task execution a program consisting of

motion procedures together with the environmental data is

stored in the system.

2.2.6 MSM (Master-Slave Manipulator)

The MSM [28] language describes the software jigs and control

schemes of the man-slave manipulator. The instructions related to

the software-jig fall into the following three categories:

I)
2)

3)

instruction specifying elementary motion;

instruction which construct the jig body by combining the
constraints;

instructions describing the attachment and detachment of

the jig body.
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2.3 Planning and Scheduling Concept for Telerobotics

2.3.1 Concepts

The term "planning" has gained significant meaning in

describing problem-solving protocols in the AI Community. Although

the term is as old as human existence, its application in the

development of problem-solving systems has given entirely different

meanings to the concept.

Generally, planning methods require one to compile some

qualifying information about a given problem domain. From this,

pieces of information which are likely to guarantee useful

contributions toward solving the problem are retrieved and

organized for that purpose. We refer to this kind of planning as

"naive" planning.

The artificial intelligence-based definition of planning can

be described more succinctly as the systematic, vis-a-vis

experimental compilation, organization, and use of domain knowledge

for the purpose of automatic solution-finding to a given problem

via the computer. The AI community has, in the past twenty years,

been involved in the development of such

referred to by such names as "planners",

"expert system advisors."

systems. These are

"problem-solvers" or

The concept of planning for intelligent problem-solving

systems can be traced to Newell, Shaw and Simon [39] in developing

a planner called General Problem Solver (GPS). They introduced the

"mean-ends analysis" paradigm which solves problems by applying an

operator that would achieve some of the goals of the problem and
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take the preconditions of the operator as new goals. STRIPS

[16,18], due to Fikes and Nilsson, modified the GPS concepts to

that of an action model -- in which steps have post conditions that

are the only things that get changed by the steps. These two

planners -- GPS and STRIPS -- operated on nonconjunctive tasks in

elementary "block-world" domain.

Domain-independent conjunctive planning started in 1973 with

Sussman's HACKER [68], whose basic paradigm is often referred to as

the "Sussman anomaly". The urge to resolve this anomaly led to a

series to interests and developments in the field of planning. For

example WARPLAN [67], INTERPLAN [9], NOAH [55,56], NONLIN [70],

MOLGEN[66,67], DEVISER [71], SIPE [73], TWEAK [14] and ISIS [20].

The growing development in the field of planning research has

led to different representational view points, constructs and

implementation concerns. These concerns led to the special

workshop in planning held in Santa Cruz as sponsored by DARPA [68].

2.3.2 Some Planning and Scheduling Techniques

In order to develop a planner for a telerobotic system, the

current planning techniques were reviewed and summarized as

follows:

1. A Tactical Planner: a planner which is primarily concerned

with deciding what to do in situation in which available

information is limited or uncertain.

2. A Linear Planner: In STRIPS [16] for example, actions are

represented as functions from sets of sentences to sets of
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sentences in some appropriate language. Such a representation

allows for what is disparagingly referred to as linear

planning. In a linear planning framework, plans correspond to

sequences of primitive actions.

3. _ Hierarchical Planner: This is perhaps the best known and

most misused technique since a number of unclarified concepts

get tangled with its application. Hierarchical planning arose

out of dissatisfaction with linear planning. A hierarchical

plan starts at the general level of planning abstraction and

moves down to specific, details, subplans and levels.

Problem-solving with hierarchical networks occur via conflict

resolution [19], relaxations [33], and modeling interactions

between subplans [70].

4. An Opportunistic Planner: This is a planning system whose

actions co-routines with the model environment to dynamically

instantiate or alter a problem-solving behavior based on

circumstances. That is, during each point of a problem-

solving life cycle, the planner's current decisions and

observations suggest various opportunities for further plan

development and changes. Originally suggested by Hayes-Roth

and Hayes-Roth [27], the concept has been used to explore

opportunistic scheduling of manufacturing systems [19].

5. A Least Commitment Planner: NOAH [55] and his descendants

operate on the premise that operations are not to be sequenced

unless absolutely necessary. A set of procedures known as

critique agents are used to detect and correct interaction,
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eliminate redundant operations, and so forth.

6. Case-Based Planner: Case-based [11,68] planning systems take

as a starting premise that the organization of experience is

paramount in formulating new plans and debugging old ones.

Case-based reasoning is a simple idea: solve new problems by

adapting solutions known to work for old problems. The Case-

Based Planner offers several potential advantages over rule-

based reasoning systems: rules are not combined blindly in a

search for solutions•

7. Aqenda-Based Planner: This is a class of planning system using

procedural listing of objects, events, and activity

occurrences during the problem-solving life cycle. Heuristic

models, such as priority rankings, utility preferences, or

•

economic values are used to

structures in the agenda list.

category is SIPE [73].

"promote" or "demote" plan

An example of planner in this

Endorsement-Based Planner: This is a planner which develops

and refines plans based on the user's actions and possible

intentions. The concept of "intention" allows the planner to

reason from the human behavior perspective.

2.3.3 Plan Evaluation for Telerobotic Application

Successful implementation of computer-based systems are

usually need-dependent• Therefore, in order to buy or develop a

planning shell for a problem-solving system, several issues have to

be resolved. We present the basic and most obvious technical



16

issues:

i. Language -- A plan must first have a vocabulary of symbols and

notations in which the initial state, goal conditions, and

operators may be represented with conceptual objects. For

example, the assertion: INROOM (ROBOT, ROOMA) means that the

mechanical device called ROBOT is in room called ROOMA. Some

languages have been developed based on the planning

environment. For example, NUDGE uses FRL, CONNIVER uses

MICROPLANNER, STRIPS uses MACROPS, and ISIS uses SRL.

2. Intention -- A plan must have a purpose or intention. This

characteristic allows a planner to act in a directed, domain-

specific fashion. It is possible for a plan to have multi-

intentions, and subplans are developed in a layered fashion to

handle such intentions.

3. Belief System -- A plan must contain some specification or

instantiation of beliefs about the environment for which the

plan is designed. The availability of an embedded belief

system in a planner allows for on-line result validation and

verification.

4. Conflict Resolution Capability -- A planner should be able to

trouble-shoot the problem environment, understand and resolve

basic conflicts.

5. Cooperation -- A planner should be able to incorporate

knowledge from other (user-defined) plans towards solving a

common problem. This principle is known as "Cooperative

Planning" [10].
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6. Authority -- A planner should possess an authority to

determine (using its knowledge) whether to exclude one or more

subplans during execution of a problem.

7. Responsiveness -- A planner should respond to events occurring

during the plan's execution. The number and magnitude of

changes may be a source of difficulty. This concept is known

as "Replanning Ability" [38].

8. Plan length and predictability -- The more predictable the

execution environment, the longer the plan can be with a

reasonable expectation for successful completion. Automatic

programming, in particular, can produce plans (programs)

millions of steps long that usually complete successfully.

Producing such big plans is only possible because a computer

is such a predictable environment; the main source of

unpredictability here concerns the input to the program.

9. Correctness versus robustness -- Traditional AI planning

systems tend to concentrate on producing correct plans.

Although this method is appropriate for highly predictable

environments, it is much more important to produce robust

plans in realistic situations. Robustness means the plan is

likely to succeed no matter what unanticipated conditions

arise; that is, robust plans avoid including commitments to

courses to action which allow few options if they fail in

execution.
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2 • 4 SUMMARY

To summarize, AI-based planning systems can be used for the

following purposes:

• Deciding on a course of action before any action is taken•

Monitoring progress during problem-solving in order to catch

errors before they create much difficulty•

Reducing the amount of search which

conventional problem-solving systems

operation schedule for a job shop).

characterizes most

(e.g. planning an

Providing a modular approach to problem-solving, thereby

allowing for easy modification, portability, and adaptability•

Allowing for both descriptive and prescriptive representations

of how actions and human behaviors interact during problem-

solving situations•

Plans allow humans to experiment on concepts related to the

design of behaviorally oriented systems.

Plans allow humans and computers to build a pragmatic model

between a hypothetical system and reality.

Plans allow for tests and comparisons of the various ways

experts solve identical problems, and recommend a common

framework for standardization (where possible).

Good plans attempt to minimize redundancies in goal and

resource specifications, thereby reducing costs of problem

solving•

• Plans can be used to instruct and explain concepts.
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CHAPTER 3

THE DEVELOPMENT OF A CONCEPTUAL MODEL FOR PLANNING

IN A TELEROBOTIC SYSTEM

3.1 Introduction

The aim of this chapter is to discuss a conceptual model

required for planning a telerobotic system. As indicated in a

previous study by Orlando [49], the complexity of a telerobotic

system is such that "interleaving of the steps of plan creation and

plan execution must be conceptualized at the highest level of

abstraction prior to modeling." We show in this chapter that

planning in a telerobotic system requires an understanding of a

human-machine (robot) working together symbiotically. Among

several other things, this can take place at four dimensions; (1)

understanding the role of humans in teleoperated tasks (Expert

system), (2) understanding the task environment and knowledge

required to accomplish the task (Knowledge Base System), (3)

understanding the communication and problem-solving approaches for

a "symbiotic" system (Distributed Problem-Solving Environment), and

(4) understanding the cognitive requirements that allow the agents

(robots, human, computers, etc.) to learn from the accomplishment

of one another (Learning System). This concept is shown in Fig. 3

and it defines the components of a telerobotic planner.

3.2 The Expert System: Understanding the role of Humans in

Teleoperated Tasks

The use of robot technology along with human labor does not

necessarily remove humans from the system in which a task is to be

performed. As noted by Rasmussen... basically it moves them from
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Scheduling In A Telerobotic System.
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the immediate control of system operation to higher-level

supervisory tasks and to long-term maintenance planning tasks."

Because of the expected changes in the human role as a

controller to supervisor, the control expertise must be preserved

and transferred to the robot. The realization of such transfer can

be achieved via expert system technologies.

Expert systems are computer-based models that can solve

problems that are normally solved by the human "experts." For a

telerobotic system, the roles of an expert system module can be to:

- direct both the robot and human to goal attainment;
- provide multiple context advice;

- supervise the human and the robot in task allocations;

- provide suggestions and alternatives to problem solving
situations.

3.3 The Knowledqe-Based System: Understanding the Task Environment

and Knowledge Required To Accomplish Tasks

To solve expert-level problems in which several agents interact, an

access to a substantial knowledge base is required. In fact such

a knowledge base should be dynamic with response to different task

environments. As identified by Ntuen, Park and Sliwa [47] there

are two general types of knowledge requirements -- teleological

knowledge and epistomological knowledge respectively.

Teleological knowledge relates to the entire design spectrum

of the teleoperated system. The morphology of the design can be

understood only through the analysis of human and machine (robotic)

capabilities with respect to task requirements.

This concept is referred to as "mixed initiative" [48]. "The

mixed initiative concept is based on the transfer of authority and
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control responsibility between an automated system and a human

operator." Thus, the knowledge (information) for planning relates

to task, control, and feedback.

Examples of teleological

algorithms, human discrimination

knowledge are robot control

of occluded environment, or

cognitive skills required for a particular task (domain knowledge).

Epistomological knowledge relates to the information and data

required for understanding a task situation defined at the highest

level of abstraction. An introduction to epistomological

constructs for teleoperated systems has been discussed by Orlando

[47]. In her discussion, an evolutionary approach where knowledge

is activated, complied, managed, and controlled from the bottom-up

is presented. The knowledge elements identified for modeling

teleoperations are as follows:

i. Intrinsic and extrinsic data compilation. This involves a

process of deep generation of information to describe a system

behavior. Psychologists refer to this as a pseudo bio-

feedback information processing, l

2. Thematic and rhetorical knowledge of the system. This

involves some sense of spatial cognition where information

about a situation is stored in the form of dynamic production

IRasmussen, J. (1983). "Models of Mental Strategies In Process

Plant Diagnosis". In Human Detection and Diagnosis of System

Failure (M.J. Rasmussen & W.B. Rouse, Ed., Plennum Press, New

York).
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This involves data/information based

on reflective assimilation of the environment. In the

telerobotic system, a simulated perceptual representation of

a picture by computer vision can provide informal

introspective data.

Perceptive Knowledge. This involves data based on physical

sensation as interpreted in the light of experience. Orlando

[48] used a theory of physiological psychology to explain the

"hierarchy of abstraction" of knowledge evolution• Perceptive

knowledge for robotic software systems requires instantaneous

cognition of "foreign" objects that may pose a threat to

mission participants.

Catalog of Intentions and Meaninqs about Concepts. These

relate to data used to describe the purpose of the (planning)

system and expected goals. The data or constructs can be ill-

structured, fuzzily described and/or possess temporal

attributes.

3.4 Distributed Problem-Solving Environment

A telerobotic system requires that humans and artificial

agents (telerobots and computers) cooperate in decision-making and

control of tasks in a complex, unstructured, and dynamic

2Manfred, K. and Galanter, E.H., 1958. "The Acquisition and

Utilization of Information in Problem Solving," _nformation

and Control, Vol. i, pp. 267-288•
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environment. Unlike the manufacturing robots, telerobots are

expected to possess "exceptional" intelligence, be flexible, and

exhibit a high level of dexterity and reliability. The existence

of these skills and requirements represent "virtual" attributes

which must match those of the human operator -- at least

conceptually if the true meaning of "symbiosis" is to be modeled

into cooperative and distributive planning. I n t e r e s t s i n

telerobotics require work on cooperative problem solving. In this

environment, we conceive of a group of teleoperators who form a

"crew" to perform a particular task known as action units. Many

modeling issues of concern for effective cooperative problem

solving include:

(i)

(2)

(3)

(4)

Agents should co-routine during task execution.

assignment based on sub-task decomposition

implicitly on the agent's capability.

Thus, task

should rely

A distributed (and cooperative) problem solving environment

should possess at least one agent who can "authorize" the

execution of plans. Thus, the idea of priority is crucial in
such an environment.

Agents need to represent and reason about their own actions,

the actions of other agents, and their interactions between

agents.

Agents need to coordinate their interactions and possess

interleaving plans so that they work as a coherent team when

cooperating to achieve a shared goal.

3.5 The Learning System: Understanding The Cognitive Requirements

In a Telerobotic System.

The capabilities of "symbiotic" system agents to learn from

one another is an issue of concern in modeling a telerobotic

environment. There is significant support in the literature by

cognitive theorists [4,39] that suggests the need of learning as a
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paradigm in which a human-machine environment can work

cooperatively. Because many tasks are difficult to perform jointly

in a telerobotic system, especially if communication time delays

exist, an appropriate learning mechanism is needed. Such a

learning mechanism may involve human intelligence (knowledge),

sensory and robotic capability to perform remote manipulation

tasks, etc.. A particular consideration of learning in a

telerobotic system is skill acquisition by robots.

Skilled tasks are multi-componential and heterogenous in

nature, requiring mixtures of cognitive, motor and perceptual

abilities [I]. Acquisition through the learning of performance

strategies is typically necessary when tele-autonomous systems are

desired. Thus, for a telerobotic application, a learning system

should interact between the human teleoperator and the robot such

that:

(3)

The human can teach basic task primitives to the robot.

The robot can learn what is being taught through cognitively
driven models.

The robot can learn about task environments, generate plans,

and respond to schedule or scenario changes.

3.6 SUMMARY

A teleoperation requires that both human and artificial agents

(robots) cooperate in decision making during task execution. Task

planning in such a system requires more than the classical modeling

techniques because of interactions of several non-quantifiable

parameters. One approach to modeling is therefore first to
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conceptualize the levels of abstraction, and then construct a

domain-specific simulation of the task environment. We have

identified and discussed these levels of abstractions, the roles of

human (experts), the knowledge base requirement, the distributed

method of problem solving that integrates the human and machine

(robot) capabilities, and the need for skill acquisition model

between agents using the concepts from learning literature.



27

CHAPTER 4

TASK PLANNING IN A TELEROBOTIC DOMAIN

4.1 Overview of the Planning Method Used

Task planning is one of the several issues in a telerobotic

system, as well as in artificial intelligence. The main concern is

if a telerobotic system is considered to be "symbiotic", then the

interdependence of its agents comes from sharing the same limited

resources. Each of the agents has its own state control variable,

behaviors, and goal functions. Thus, the resources of the team of

agents must be efficiently mapped onto their capabilities and the

demands of the prevailing task regardless of its changing nature

and uncertainties.

Planning problems, like most AI topics, have been attacked in

two major ways [53]: approaches that try to understand and solve

the general problem without the use of domain-specific knowledge

and approaches that directly use domain heuristics. In planning,

these approaches are often referred to as domain dependent (those

that use domain-specific heuristics to control the planner's

operation) and domain independent (those in which planning

representation and algorithms are expected to work for a reasonably

large variety of application domains).

The planning and allocation of tasks in a telerobotic system

environment are rather complex. In a single unit system, the

behavior of the entities can be simulated as a "snapshot" of a

defined scenario since the entities have predefined roles to play.

A telerobotic system on the other hand is a symbiotic system which
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requires division of work between the humans and the machines in

such as a manner as to facilitate their cooperation through shared

knowledge, skills, and experiences. This usually involves multi-

tasks and multi-agents (humans, computers and robots).

The multi-task problem is a collection of several tasks

operating concurrently as opposed to only one task operating at a

time (sequential task problem). The task allocation strategy may

use a static model, i.e., assign a fixed sub-set of the tasks to

each resource prior to job execution. This type of allocation is

predominant in activity-based simulation environments where the

resources perform only their tasks when necessary. The basic

problem in this type of allocation is that if one resource fails in

performing its task, another resource cannot take over the

operation of the task. A more flexible assignment strategy is the

dynamic approach. In dynamic task assignment, any resource which

is currently free and capable to perform a task could be assigned

the next task to be performed. Typically, the planning token would

normally consist of:

- Planning and allocating tasks for humans and machines.

- Planning resources to meet the desired goal(s).

- Sequencing tasks according to demand (e.g. control, command,

supervision and monitoring.

Harrison and Orlando [26] give the following conceptualization for

telerobotic task planning:

i. Planner - system plans and executes operations in respond to

task request and with fixed scenarios. The system appeals to
operator when anomalies arise.
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2. Expert planner -- same as planner except that plans are

synthesized from generic subtasks and alternates are logically
derived.

3. Robust planner -- same as expert planner except that

alternates are developed dynamically in response to feedback

and performance.

4. Learning planner -- the system is able to autonomously improve

its performance by generalizing circumstances of previous
tasks.

In relation to the definition and classification of planning

technologies discussed above, at least two kinds of planning can be

envisaged for a telerobotic system: path planning and structured

planning. Path planning occurs at the spatial level where task

plans are geared towards changes in position orientation in time

and space. The major research in this area is in collision

avoidance. The spatial planner determines how to transfer objects

and move through a work space without collision with obstacles.

Structured planning deals with temporal task procedures which

include such elemental tasks as pick, place, remove, inspect, and

so on. Usually, these task elements are executed repeatedly in a

teleoperated mode even in an unstructured environment. The task-

level planner specifies the activities for each component of the

work space in terms of sequencing for efficient operation.

4.2

The following definitions

chapter:

X a task environment

P a plan primitive
G

Plan Formalism For a Telerobotic Domain

will be used throughout this

a vector of goal states to be achieved (g x 1 in dimension)
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a vector of subgoals where the element s_ is the subgoal j
required for goal achievement g

p = i, 2, .... P

g = 2, 2, .... G

j = i, 2, .... S

is a matrix of operator elements with pxj dimension. Thus,

the operator elements _ is the transformation or problem

solving operator required to move subgoal j to goal state g.

A Means-ends scores for plan strategy p; a vector pxl in
dimension

The plan formalism can be written as

P(G):O.s-I, GA T..................... (I)

Equation (i) can be stated as follows: in order to achieve goal G,

use plan P which transforms a vector of useful subgoal S to goal

state G using the operator 0. I is g * g identity matrix.

By using the method of means-ends-analysis [39] and Noah's

[56] least commitment approach, we view a telerobotic task planner

evolving in a dynamic environment of cooperating behaviors. Thus,

agents can recognize unnecessary plans and eliminate them.

Similarly, new opportunities can be learned and new plans added.

In this case, the planner changes with respect to various subgoals,

and the operators must learn a new syntax from every new task

environment. Example task scenarios with a new syntax can be the

use of a telerobot for burial of waste material, or assembly of

space structure. As can be envisaged, the task environments are

different; however, there are certain task primitives such as

material handling that are common. Included this concept, a domain-

specific plan with "syntactically scoped variable" with constraint
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is written as:

vo3x s

where n = 1,2...g,

d__@is the dynamic changes in operator (problem solving strategy)
dx

for new problem scenario x, dA_A_ represents changes in means-ends
d"s

scores with respect to new subgoals; P'(G) is the existence of

optimal plan required for G.

Similar to STRIP [15] and ABSTRIPS [17], the sequence of

actions:

ADD (8) -DELETE (@) -. ....

can be written abstractly as

8(x) - (I + Sign A) ................. (3)

where 8(x) is the operator required for problem environment x and

{_! , if ADD(8) is true }
if current operator is true for x.

Sign A = _ if DELETE(8) is true

4.3 TOP: The Task Oriented Planner For Telerobotic Application

4.3.1 TOP Concept

The concepts of plan formalism discussed have been used to

develop a prototype planning environment known as TOP (a Task

Oriented Planner). TOP is a planner that uses information from a

task environment to plan and schedule resources towards the

achievement of a goal. The data structure for TOP is at three
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macro levels which are:

io Goal Criteria. The user explicitly specifies the task (goal)

to be accomplished and the relevant criteria for

effectiveness. For example, a goal can be aircraft refueling,
and the measure of effectiveness in this case could be the

completion (turnaround) time.

• Resources. Each task domain needs resources for task

execution. In the telerobotic system, the human telerobotic

interaction requires a different modeling procedure for task

assignment. Thus, for each resource, one has to specify the

skills required to accomplish the desired task. The skill

level can be vision, search and knowledge. For each skill, a

fuzzy membership function is used as a trade-off decision

model at the task assignment phase (this is discussed in

detail in section 4.4.1 of this report).

• Tasks• At the lowest level of abstraction, a task is used in

the same context as a job. In the highest level abstraction,
a task represents some chunks of jobs with some defined

relationships. The development of a task tree is a required

step for the TOP (See Chapter 5 for further discussion).

4.3.2 TOP Structure

The overall TOP concept including the planner is shown in Fig.

4. As shown in Fig. 4 task planning is accomplished by the

PLANNER. The planning concept extends the methods of the GPS

means-ends analysis and NOAH's least commitment approach to include

deliberation• The "acts of deliberation" take into consideration

the possible time lags between the agent's behavior during task

planning phase. Thus, a deliberate plan is driven by possible

expected behavior of the agents taking part in the task domain.

In order to minimize the time lag at the planning phase, we

have developed a tool known as a "Deliberate Plan Network" (DPN).

DPN uses the principle of flow mechanism to preserve certain
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logical primitives from being considered repetitively• In so

doing, we try to minimize assigning tasks to agents at more than

their desired capability.

In the DPN, we have tokens of decision elements known as

bureaucratic fixers (BF) and moderators• A BF tries to evaluate

the agent's capability for each task and flags out an agent

dominating another during task allocation• The moderator is

similar to constraint resolution criterion that controls the

replanning and recursive behavior inherent in DPN. Appendix-A

gives an abridged discussion on DPN.

4.4 Task Assignment in TOP

The tasks performed in a real-world environment are typically

characterized as requiring "skilled performance", and may require

integration of multiple types of skills (motor, perceptual,

procedural, etc.)

The scenario above can best be described by a mix of all or

some of the following:

• dynamic in that changes of states occur;

• real time in that decisions must be made instantaneously;

• unpredictable environment in that rules and behaviors

describing the task environment are not stable;

• multiagents are involved in that decision policies, plans,
etc., coexist in a spatially distributed fashion.

4.4.1 The Teleoperator Skill Matrix (TSM)

In order to develop a multi-task assignment model, the concept

of teleoperator skill matrix (TSM) was formulated. A TSM is a
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multi-dimensional matrix that contains weighted information on a

task to be performed and the operator skills required to perform

such a task. The TSM is developed in stages as follows:

Stage i: Identify the tasks to be performed and the resources

required to perform the task (See Exhibit i).

Stage 2: Identify the skill inventory for the resources (See

Exhibit 2). An example skill inventory list (See, e.g.;

Nof, Knight & Salveny [41]) is given below:

I. Vision

2. Manipulation

3. Search

4. Recognition

5. Knowledge

6. Capability:

- payload

- computational

7. Motion

- dexterity

- maneuverability

8. Reasoning

9. Communication

I0. Endurance

- tolerance of

adverse environment

Stage 3: Subjective rating of the resource skill using the method

of Parker and Pin [50]. The rating score is defined as

a fuzzy membership function.

Exhibit 3 shows a multidimensional TSM which is a combination of

Exhibits i and 2. The matrix entry and solution to task assignment

is discussed below. Note that each subtask is rated based on the

resource profile. A typical task tree is shown in Fig. 5.

4.4.2 Task Assignment Model Using the Fuzzy TSM

The concept of fuzzy set introduced by Zadeh [74] describes a

situation in which the imprecision is due to vagueness or

subjective judgement rather than randomness.

With this aim in mind let us define a fuzzy set as described

by Zadeh. A fuzzy set is a class of objects with a continuum of
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Exhibit-l: Task - Resource Matrix
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Exhibit-2: Resource - Skill Inventory Matrix
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grades of membership. Such a set is characterized by a membership

(or characteristic) function which assigns to each object a grade

of membership ranging from zero to one. Let X be a space of point

objects, with a generic element of X denoted by x. A fuzzy set A

in X is completely characterized by the set of pairs

A = (_A(xi),xi),xicX ................ (5)

where (_A(Xi) denotes the grade of membership of x i in A and is

having values in the real interval (0,i).

Let B be a fuzzy set defined in the universe of discourse Y with

values in the unit interval, i.e; B: Y _ [0,I]. We can use an

interesting property derived in previous papers [44] to describe a

special assignment:

R IIA =B ........................... (6)

where R is a fuzzy relation defined on the Cartesian product X x Y

and with values in [0,i], i.e; R: X x Y _ [0,i], II indicates

inverse fuzzy operator (max, or min). By rewriting equation 6 in

terms of fuzzy operators.

Ux_[ A(x) A R(x,y)] : B(y) ........... (7)

for any y _ y, where U and V are the classical max and min

operators defined by:

_AA s : min{_A,_B)

As an example application of the above concept in task
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assignment, consider the following data:

Given the task - skill requirement matrix

Task

Task-I (XI)

Task-2 (X?)

Task-3 (X_)

Skills Rec
I

YI

0.I

0.3 0.5

0.8 0

uirement

Y_ Y_ Y_ Y_

0.2 0 1 0.7

0.2

0.4

1

0.3

YI = previous knowledge about the task

Y2 = vision requirement

Y3 = lifting capability (load or weight)

Y4 = judgement requirement

Y5 = computational requirement

Skill

Operators

Operators-l(Z1)

Operators-2(z_)

Operators-3(z_)

Operators-4(z_)

YI

.9

Y?

.2

Y_ Y_ Y5

0.8 O4

0 l 0 .2 1

.3 .8 .7 .3 0

0.4 0 1 .8

The computational procedure is illustrated below.

R is defined by

R(X,Z) = A(X,_ BT(Y,Z) ........... (8a)

The matrix

R(X,Z) = max {min (_A(x,y),_T(y,z))}... (Sb)

AS an example computation of R(x,z); let X = Xl, Z = Zl, Y = {Yl, Y2,

• '', Y5}

then,

min (_(xl.yl),_B(yl,zl) = (0.1,0.9) = 0.i
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min (_A(xl,y2),_B(y_,z_))= min (0.2,0.2) = 0.2

min (_A_x_,y,)'_B(y,,z_))= min (0,0.8) = 0

min (_A(xl,n)'_B(n,z_)) = min (1,0.4) = 0.4

min (_A(x_,ys)'_B(ys,z_) = min (0.7,0) = 0

R(x,,z_) = max (0.1,0.2,0,0.4,0) = 0.4

By repeating the procedure for all x and y indexes, the operator -

task capability matrix derived is given below:

The assignment problem can now be done with any optimization

approach [50]. The Simplest assignment heuristic utilized in TOP

is to assign task x to teleoperator z using max z [R(X, Z) ]

criterion, i.e.;

Vz3x[x-z: ax[a(x, z)].............. (9)

As an example of the above criterion:

for task x1: max (0.4, 0.7, 0.3, 0.7) = 0.7, thus assign task x,

to operators z2 and

z4;

for task x2; max (0.3, i, 0.5, 0.8) = i, thus assign task x 2 to

operator z2;

for task x3; max (0.8, 0.3, 0.7, i) = i, thus assign task z3 to

operator z4.

As the results may indicate, it is possible to use multiple

resources for a task. For example, in task Xl, two robots Z2 and Z4

performing a conjunctive assembly task may be used based on the

fuzzy rankings. Also, the method can be used for technology

evaluation for investment purposes. In this trivial example, it is
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indicative that operator Z, may not be useful for any of the tasks.

However, if Z, is human, then instead of taking part on direct task

execution, Z I can be viewed as a system supervisor. The

computational process of the task-assignment problem is given in

Fig. 6.

4.5 SUMMARY

This chapter has discussed the task-planning concepts for a

telerobotic environment. The planning formalism is an extension of

concepts from previous works on GPS, STRIPS, and ABSTRIPS.

However, because of the nature of telerobotics, we have introduced

a new planning procedure based on how humans deliberate before

making a decision. The Deliberate Plan Network (DPN) presented is

an attempt for compact representation of knowledge in this domain.

The recursive nature of DPN is such that the concepts of "ADD" and

"DELETE" operators from STRIPS are preserved without a particular

plan being destroyed during task execution.

The task assignment procedure goes further more than the

subjective ratings method proposed by Parker and Pin [50] to

consider fuzzy values. Fuzzy task assignments are considered more

robust and dynamic in that subjectivity of expert opinions on task

difficulty, resource (operator) capabilities and the overall

viewpoints on assignment processes are taken into consideration at

the planning stage prior to task execution. The demonstration of

these concepts will be shown in the later part of this report.
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Define the job to be

performed and the tasks
elements.

Let X = (Xl, X_, .... Xn) ,

i = i, 2, ...n tasks.

Let Y = (YI, Y2, --. Ys)
j = i, 2, ... m skill vector

required for tasks.

Let Z = (Zl, Z2, ... Zk)

k = i, 2, ... k resources
available.

Define A and B as fuzzy relations

defined on the cartesian product

X*Y and Y*Z and values in [0,i],
i.e;

A: X*Y _ [0,i]

B: Y*Z _ [0,I]

Compute the matrix R(X,Z)

= A*B such that (X,Z)

max{min (_^, _TB) }

Fig. 6:

Apply assignment criterion

max {R(X, Z) }
Z

The Computational Procedure For Fuzzy Task Assignment
Problem
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CHAPTER 5

JOB SCHEDULING IN A TELEROBOTIC SYSTEM

5.1 Teleoperation As A Constraint-Directed Scheduling Problem

In normal scheduling terminology, "jobs" in a telerobotic

system are "operations" or "tasks" to be performed. The activities

in performing these "operations" are known as teleoperations.

A teleoperation involves multiagents which are supposed to

interact symbiotically during task execution. The interdependence

of these agents comes about from sharing the same limited

resources. Particularly, each of the agents has its own state

control variable and goal functions. Therefore, in scheduling a

teleoperation, the total amount of the resources available becomes

a decision variable itself. Hence, teleoperation is a constraint-

directed scheduling problem similar to open job shops as observed

by Fox [20].

In addition to the above observations, scheduling

teleoperation is also constrained by its unstructured domain. In

fact there are at least four scenarios that constitute to this

unstructured environment. Some of these are:

(1) Planning teleoperation is context-based; therefore, this type

of scheduling decisions made contextually at each level of

plan abstraction contextually.

(2) The basis or criteria for optimal scheduling policy are not
well defined since the environment is usually unstructured.

Here, the central issue is not to optimize a given schedule as

but to apply scheduling in manufacturing systems.

(3) There are induced lags or time delays in information flow

between the agents. Thus, a plan change during a time lag may

change an entire schedule. Of course, rescheduling problems
cannot be solved analytically except by a rich domain

independent knowledge-based system.
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(4) Since scheduling depends on "planned" information, an

infeasible plan will usually generate an infeasible schedule.

Thus, attention focusing on selecting the "best" schedule for

future use in another context may not be practicable.

In recognition these problems, we have developed a heuristic

algorithm that deploys planning and scheduling based on task

scenario. The idea is to focus attention on imminent (local)

plans. When the plans change, the schedule tries to anticipate a

new configuration of job sequence based on current resource

availability. For each task plan, partial global schedules (PGS)

are constructed. A PGS receives plan information from a window

with active plan contexts. A window that contains a tentative

schedule is matched with the current active plan and a "better"

schedule is generated for the situation. A plan window can be

viewed as a local hypothesis that tests the availability of

resources to a current plan. At the end of each schedule session,

the plan is retroactively imbedded along with its schedule context

into the global knowledge base for future reference. The situation

is depicted pictorially as shown in Fig. 7.

5.2 The Scheduling Algorithm

The scheduling problem can be formulated as follows: given N

tasks, each of which requires a certain amount of effort from a

labor crew (not necessarily all at once), how should one schedule

the tasks to obtain a total work load balance and work cooperation

that "minimize" job completion time?

The following definitions are used throughout the discussion:

M number of resources available;
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a set of tasks;

a member in T referred to as task i;

a set of resources;

a member in R referred to as resource type j;

a disjunction (OR);

a conjunction (AND);

a plan or a sequence of proposed action;

an existential quantifier, "there exist";

a universal quantifier, "for all";

the processing time of task i;

belong to;

indexes or counter notations;

a set of scheduled tasks;

a set of unscheduled tasks (or waiting tasks);

parallel logical notation; for example i <--> j means that i

is parallel to j;

number of tasks.

Heuristically, the scheduling problem is as follows:

DO: WHILE < PLAN P _ 0 >

Select the plan with an immediate goal based on plan priority.

Initialize job completion time F(P) = O, and schedule clock,
S=O.

IF the cardinality of R _ cardinality of T (i.e. if M _ N)

then schedule all tasks simultaneously• Let n_ = n 2 = 0; GO TO

step I0.

Else

Select a task with available resources and store in n I and

tasks without resources into n 2 (See e.g.; Fig. 8). Set the

completion time of all jobs in n 2 to a very large value to

indicate their low priorities. That is, _ = _, for all
j E n 2.
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Schedule all tasks in nI and update their completion times.

Select tasks in n_ for processing based on the most available

resources i.e;

B_,3x(ken2,xenl;ke _x min {ix} ]) ............. (I0)

Equation (i0) states that the tasks in n I with the minimum

processing time will release resources for unscheduled tasks k

currently in n2.

6_ Update the schedule clock to the current end of event (first

task completion) and start of a new schedule from n2. That is

S = S + Min {tx}, (see step 5) ..................... (II)

. Remove x from nI since this task has been completed; add k to

n I to update a list of task execution in progress; and update

n2 by deleting k which is now scheduled. That is;

n I = n1+k ................................... (12)

•

•

I0.

n2 = n2-k .................................. (13)

If all jobs for the current plan P have been scheduled (i.e.;

n, = N and n 2 = o) then go to step I0.

Else go to step 5.

Calculate the job completion time for plan P. This is given

by:

Vi_w {max(ti)}, if n2 = 0, see step 2

F(P) = MAX _Vi_,min(ti) + Max {3j,_[jel Uj-i lJ'{min(tj )}] " '' (14)

Equation 14 states that if resources are available at the beginning

for all tasks as defined in step 2, then F(P) is the time to

complete the longest task. Otherwise, F(P) is the addition of the

start times of all active jobs (defined by minimum time of all

tasks already completed in nl, ) and the expected maximum processing

time of all jobs in n2 which can either be processed in parallel
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(i<->j) or j is immediate follower of i with the minimum processing

time. Figures 8-10 are use to illustrate the above concepts.

Note that _ and _ can be robots while R I is the human. As

shown in Fig. 8B, tasks _ and Ts are in list n 2 waiting to be

scheduled. In this example, there are at least two ways to deploy

the available resources (see Fig. 8C). The decision to use R 2 along

with R l in task _ (Fig. 9A) or use R2 along with _ in executing

task T5 (Fig 9B) depends on the executing of the fuzzy task

assignment model discussed in Chapter 4 of this report. In all

cases, if we assume no inserted time delay, a minimum schedule

turnaround time (see Fig. i0) can be achieved. It should be

recognized that in the real situation, minimization of teleoperator

time delay is a factor that should not be discounted. This is

taken into consideration during the task execution model.

5.3 SUMMARY

We have presented a heuristic technique for scheduling limited

resource teleoperations. We view a teleoperation as a constraint-

directed scheduling problem in an unstructured environment. The

interdependence of teleoperators and their various state controls

are considered as the major decision variables in the scheduling

policy. Although no sets of optimization criteria have been

defined for the scheduling problem, the algorithm is general enough

to incorporate time lags between teleoperators during task

executions. Since the scheduling formalism incorporates

information directly from the planner, it is easy to preempt
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FIG. 8C A Schedule showing a dynamic availability

of resource # R2.

R2 can be deployed in any of the two scenarios

in Fig. 9A and 9B.
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FIG. 10 A possible minimum time schedule with no inserted idle

timet c min<t c.
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current schedules in order to respond to plan changes. This

feature of the algorithm makes it to be domain-independent suitable

to any planning involving multiagent systems.
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CHAPTER 6

MODEL APPLICATIONS AND VERIFICATIONS

6.1 The Application Environments

The TOP, which is the main architecture for planning and

scheduling have been successfully applied to two scenarios. In the

first scenario, TOP is used in an aircraft turnaround domain. The

applications are achieved by using a NEXPERT T_ expert system

shell. In the second scenario, we apply TOP to a simulated block

world where constraints are adaptively posted [43]. This example

is implemented in a MULISP TM domain.

6.2 Aircraft Turnaround Function

Aircraft turnaround function consists of refuelling, re-arming

and minor aircraft maintenance during combat missions. When an

aircraft is returning after delivering a sortie, the pilot relays

the status of the aircraft to the ground crew in order to give them

a head start on preparations for turnaround. The crew chief gives

thorough visual examination of the aircraft based on the pilot's

information. If the aircraft has no damage, it is taxied to the

turnaround area where the turnaround functions are executed.

During combat, potential exposure of crew members to hostile

situations cannot be avoided. The use of telerobotic assistance

will result in a smaller crew size for the aircraft turnaround

function. The critical goal is to reduce the total man hours

3 NEXPERT _ is a treadmark of Neuron Data, Inc.
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expended in the turnaround operations. We use the telerobotic

planning and scheduling model to test the feasibility of

teleoperation in an aircraft turnaround domain.

6.2.1 Planning Aircraft Turnaround Function

The turnaround function chosen for demonstration is aircraft

refueling. Refueling is the most commonly performed turnaround

function and requires the least amount of dexterity, which makes it

the most amenable to robotics.

At the planning phase, the turnaround function tasks are

represented in the form of a data base (See Table-I). The planner

uses the information on a job code, for example AG2, to generate a

plan tree as shown in Fig. 11. As indicated in Fig. 11, the bold

lines indicate a possible feasible plan path. This is achieved by

heuristic reduction using the plan deliberation graph (PDG)

discussed earlier. Note that Table-1 is obtained by a task

analysis of all jobs to be performed on each of the nine aircraft

stations (See Exhibit 4).

The task planner TOP is written in DBASEIII TM with Artful TM

interface. By entering a configuration code, the planner generates

a list of tasks (with the task name, station to be worked on) and

the expected time required to complete a task by either a human or

a robot. In TOP, a configuration code defines a macro job. A

final plan graph for job AG2 is shown in Fig. 12. As the final

plan graph shows, the task structure indicating precedent

constraints for a job A(3) is indicated. A(3) means that an MK82
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missile is to be loaded in station 3. Similarly, for aircraft

refueling, 370(6) means that a fuel tank mounted on station 6 is to

be refueled.

Table-l: A list of possible configurations

Config Code* 9 8 7 6 5 4 3 2 1

AAI M M M - EMC - M M M

AA2 M M M 370 300 370 M M M

AA3 M M M - - - M M M

AGI M - A A 300 A A - M

AG2 M - A 370 ECM 370 A - M

AG3 - - B B ECM B B - -

AG4 M - C - 300 A A - M

AG5 M - C 370 300 370 C - M

AG6 M M B B 300 A A M M

A - 3 MK82'S MOUNTED ON A TER

B - MK84

C - 2 AGM-65'S MOUNTED ON A LAU-88 LAUNCHER

M - AIM-9L MISSILE MOUNTED ON MISSILE LAUNCHER

370 - FUEL TANK MOUNTED ON STATIONS 4 & 6

300 - FUEL TANK MOUNTED ON STATION 5
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Exhibit 4: Aircraft Work Stations
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PLAN LIST STRUCTURE

AG2: M(1), A(3), ECM(5), 370(6), A(7), M(9)

• I I '_

• _,,b

I_o_c,)l I.o_c_)l............ I_o._n)l

#1

#S C

e Q e e '.....
_. • $1

" "-'" N,'

®

Final Inspection

pLAN LIST DEFINITION JOB DEFINITION

AG2:

J(S):

Is configurationcode
= ICT plan.

Job to be performed
on station S.

e.g. A(3) is load3 MK82's
on sta_on3.

Job (i) : Job i
T(i..) : Task or subtask for job i.
T(0) : Final check.

E.g. ForA(3) plan
J(1) = MER prepration
J(2) =Loading, etc.

Fig. 12: A TREE-LIKE TASK SYSTEM FROM TOP
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6.2.2 Scheduling Aircraft Turnaround Function

Upon the completion of planning, the TOP scheduler picks the

job with highest priority for scheduling. The scheduler consults

the task skill matrix to verify each task difficulty and their

respective fuzzy ranking? Using the fuzzy attributes and

structural constraints, the individual task is assigned to either

a robot or human for execution. In cases where the robot executes

a task, the human operator serves as a control supervisor while the

task is autonomously executed under a sensor-driven control

procedure.

The scheduling procedure is implemented with NEXPERT TM. In

NEXPERT, two main characteristics of objects can be distinguished:

what they represent and how they should be used by the system. The

structure of an object is as follows:

name
classes

subobjects

properties

As an example, consider a turnaround function plan P1 with all the

jobs to be performed: This can be represented as

CNAME = P1

(@CLASS = job

(@ PROPERTIES =
endtime

id

job name

personnell

personnel2

personnel3
starttime

station

timel

time2

timepd
unassigned

working-on )))

"job end time"

"job ID"

"job name"
"crew name:

"crew name"

"slot for floating Crew"

"job start time"
"station location"

"time for human"

"time for robot"

"dynamic slot"

"logical variable to assign task"
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Thus, each job category has start and end times, dynamic slots to

hold a vector of unassigned jobs, crew members, a job

identification and the station number to be worked on. Generally,

NEXPERT knowledge representation allows for dynamic objects.

Dynamic objects act as instances of variables which are those

classes and objects. Examples of dynamic objects are "personnell3"

and "timepd" slots for holding non-instantiated variables.

A very important aspect of the object organization is the

notion of inheritance, that is to say, the way objects and classes

can communicate values to each other. An object will typically be

able to inherit a value of one of its properties from one of its

classes or parent objects. For example, the door of the car will

inherit the "color" of the car (parent object). All these value

passing mechanisms, which represent types of default reasoning, are

customizable at the lower level of granularity: the property of the

object or the class. Objects also inherit functions, or methods.

During a job schedule, the knowledge processing environment

dynamically creates a "Node" for each personnel resource and the

class attributes as discussed earlier. Dynamic node creation

allows for possible job pre-emption, resumption and assignment of

idle resources.

At the end of each schedule, the system records the generated

feasible schedule into a separate external dBASE file. This data

remains available for later analysis.

The scheduling process uses the schedule algorithm of Chapter

5 (Section 5.2). The invocation of the algorithm uses rules to
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execute each schedule profile. For example, to select a plan for

a schedule, Rule 85 below is fired first by setting a priority

(INFACT) to the highest value possible.

(@RULE= R85

@INFCAT=I00 ;

(@LHS=
(Yes (SetData)) )

(@HYPO= (GoGet)

(@RHS=
(Retrieve ("c: \dbase\joblist. dbf")

(@TYPE=DBF3 ;@FILL=ADD;@NAME=" ' job_ '!id! "; \

@CREATE= ljobl, Itimecodel '@PROPS=id, job_name,\
station, unassigned, timel, time2, starttime, \

"station" \endtime; @FIELDS=" id" "j ob name",

"unassigned", "timel", "time2", "starttime", \

"endtime" ;))

(Do (MAX (< Ijobl >. id) ) (n))

(Do (n) (ctr)

(Do (i) (wpcnt))

(Do (1) (chcnt) )

(Retrieve ("c: \dbase) upldstat, dbf" )

(@TYPE=DBF3 ; @FILL=ADD; @NAME=" ' station' !id!" ;\

@CREATE= Istati°n I;@PROPS=free; @FIELDS="station" ;\))

(Let

(Let

(Let

(Let

(Do
(Let

(Let

(wpl.free) (TRUE))

(wp2.free) (TRUE))

(wp3.free) (TRUE))

(<ljobl>.working_one)

(0) (timeclock))

(chl.free) (TRUE))

(ch2.free) (TRUE)))

(FALSE))

A list of unassigned tasks can be constructed using the global

rule:

(@RULE= R83

(@LHS=
(=
(>
(Is

)
(@HYPO=

(@RHS=
(Do

(ctr) (0))
(SUM(< IjobJ >.unassigned) )

(<[ job [> .working_on)

(0))
(FALSE)

find_smallest_timepdl)

(99999) (<ljobl>.timepd))))

The task assignments are performed asynchrously using the global

rule:
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( @RULE= R74
(@LHS=

(> (ctr) (0))

)

(@HYPO= continue_assign)

(@RHS=
(Reset (continue_assign))

(Do ('job_' \ctr\. job_name)

(Do (' job_' \ctr\. station)
(Do
(Do
(Do

(current_job.job_name))

(current job.station))

('job'\ctr\.unassigned) (current__ob.unassigned))

('job'\ctr\.id) (id))
('ctr-l) (ctr))))

Finally, the global rule to check task completion and update system

status is given by:

(@RULE= R79

@INFCAT=I00;

(@LHS=
(= (ctr) (0))

(= (SUM(<ljobl>.unassigned)) (0))

)

(@HYPO= done)

(@RHS=
(Do (MAX(<ljobl>.endtime)) (timeclock))
(Write ("c:\dbasekfinjob.dbf")

(@TYPE=DBF3;@FILL=NEW;@PROPS=starttime,endtime,\

job_name,name,station;@FIELDS="STARTTIME",\

,,ENDTIME,,,,,JOB_NAME,,,,,NAME,,,,,STATION,,;@ATOMS=<IpersonnelI>;\

))
(Write ("c:\dbase\jobdone.dbf")

(@TYPE=DBF3;@FILL=NEW;@PROPS=job_name,starttime,\
endtime,id,station,timel,time2,unassigned,\

personnell, personnel2, personnel3 ;@FI ELDS=JOB_NAME", \
"ID" "STATION", "TIME1", \"STARTTIME", "ENDTIME",

"TIME2", "UNASSIGNED", "PERSONNEl I", "PERSONNEl2", \

"PERSONNEI2";@ATOMS=<Ijobl;))))

Table 2 contains a sample schedule generation for eleven tasks and

three personnel. Table 3 shows sample task assignments for each of

the three personnel. Note that the job schedules take place

simultaneously with job execution. The execution of jobs by the

robot is discussed below.
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TABLE 2: Scheduling List for Each Job (Time in Minutes)

Job Names

LOAD AIM-9L MISSILE

UNLOAD TER RACK

UNLOAD LAU88 & AGM-65

UNLOAD TER RACK

LOAD 370 & REFUEL

REFUEL 300

LOAD 370 & REFUEL

LOAD 3 AGM-65

LOAD AIM-9L MISSILE

SAFETY CHECK

LOAD CHAFF/FLARE

Station Start End Personnel

1 5.00 I0.00 wpl wp2

3 19.00 21.00 wp2 wp3

3 21.00 26.00 wI)2 wp3

4 17.00 19.00 wp2 wp3
4 19.00 23.00 chl ch2

5 12.00 13.00 chl ch2

6 8.00 12.00 chl ch2

7 i0.00 17.00 wpl wp3

9 0.00 5.00 wpl wp2
0 3.00 8.00 chl ch2

0 0.00 3.00 chl ch2

wp3

wp3
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TABLE 3: Scheduling List for Each Personnel (Time in Minutes)

Job Names

LOAD AIM-9L MISSILE

LOAD AIM-9L MISSILE

Station Start End Personnel

9 0.00 5.00 wpl

1 5.00 i0.00 wpl

Scheduling List for Each Personnel

Job Names

LOAD AIM-9L MISSILE

LOAD AIM-9L MISSILE

LOAD 3 AGM-65

UNLOAD TER RACK

UNLOAD TER RACK

LOAD LAU88 & 3 AGM-65

Station Start End Personnel

9 0.00 5.00 wp2

1 5.00 i0.00 wp2

7 i0.00 17.00 wp2

4 17.00 19.00 wp2

3 19.00 21.00 wp2

3 21.00 26.00 wp2

Scheduling List for Each Personnel

Job Names Station Start End

LOAD AIM-9L MISSILE

LOAD AIM-9L MISSILE

LOAD 3 AGM-65

UNLOAD TER RACK

UNLOAD TER RACK

LOAD LAU88 & 3 AGM-65

Personnel

9 0.00 5.00 Wp3

1 5.00 i0.00 wp3

7 I0.00 17.00 wp3

4 17.00 19.00 wp3

3 19.00 21.00 wp3

3 21.00 26.00 wp3

6.2.3 Robot Execution of Turnaround Function

The task execution simulator is comprised of a five axis robot

mounted on a linear slide. This enables the robot to travel the

full length of the runway where the turnaround function can be

accomplished (See Fig. 13).
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The runway is equipped with a feedback sensor so that the

exact location of the aircraft can be given to TOP enabling the

robot to perform the functions. There are three equally spaced dip

switches on the runway, which when depressed by the wheels of the

aircraft, activate them and the position of the aircraft can be

given to the minicomputer. The system is interfaced to the

minicomputer by a RS232 serial cable through a motor mover, which

controls all the stepper motors required to run the model. The

description and purpose of the dip switches are as follows:

"A": Refueling area of the aircraft.

"B": Loading and unloading area for bombs, missiles and

ammunition.

"C": When activated, gives a clear signal for the next

aircraft to be serviced.

The commands used to move the robot are simple natural

language commands. These commands control the communication

between the robot and the system. As an illustration, the

following program syntax is used to move the robot from home

position to point "A" on the linear slide. The robot moves its

shoulder and wrist to grab the refuelling hose and then goes back

to its home position at the end of the runway:

(DEFUN SEND-COMMAND (A B)

; Formats string commands sent to the Microbot devices

(COM-OUTPUT-STRING A B)

(COM-OUTPUT-BYTE 13 B)

(HANDSHAKE B))

(DEFUN HANDSHAKE (N)

; Receives handshake signals (O,l,or 2) from the Microbot devices

(SETQ TEST (COM-INPUT-BYTE (N))

(COND

( (EQUAL TEST 49))
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( (EQUAL TEST 48)
(PRINC "INVALID COMMAND") (TERPRI))

( (EQUAL TEST 50)
(PRINC "STOP or MODE ENTERED .

button") (TERPRI))
(T (HANDSHAKEN) ) ) )

.Check STOP

(DEFUN START ()
; Initialize the Microbot Teachmover

(CLEAR-SCREEN)
(MAKE-WINDOW4 24 14 44)
(FOREGROUND-COLOR15)
(BACKGROUND-COLORi)
(BORDER-COLOR9)
(PRINC "TYPE ' FUEL' TO REFUEL --> ")
(SETQ RES (READ))
(TERPRI)
(PRINC " ** Press RESET/RUN button on the Motor Mover") (TERPRI

2)
(PRINC " ** Put Teachmover Teach pendant in TRAIN mode ")

(TERPRI 3)

(PRINC " ** PRESS 'C' TO CONTINUE ")

(SETQ RES (READ))

(COM-ININ 0 9600 N 8 i)

(SEND-COMMAND "@DELAY 70" 0)

(SEND-COMMAND "@ARM #" 0)

(CLEAR-SCREEN) (REFUEL)

)

(DEFUN REFUEL ()

;Defines the refueling function of the aircraft at POINT 4, 5, 6.

(SETQ *PRINT-ESCAPE* T)

(CALIBRATE-HAND) (AIRCRAFT-SERVICE-PLACE)

(FUEL_HOSE_LOCATION) (FL) (ms)

(MOVE_FOUR-INCH) (SEND-COMMAND "@STEP 150,0,0,50" 0) (PAUSE-l)

(MOVE_BACK) (BSFL) (ROBOT_GO_HOME_ (PAUSE-2)

(AIRCRAFT-READY) (SYSTEM)

(DEFUN FL ()

;THIS IS THE FUEL HOSE LOCATION ON THE TARMAC.

(SEND-COMMAND "@DELAY 25" 0)

(SEND-COMMAND "STEP 225,0,0,0,0,0,900" 0)

(SEND-COMMAND "@CLOSE" 0) (SEND-COMMAND "@RESET" 0)

(SEND-COMMAND "@STEP 225,0,0,-596" 0)

(SEND-COMMAND "@STEP 225,0,0,0,0,0,900" 0)

(SEND-COMMAND "@CLOSE" 0) (SEND-COMMAND "@RESET" 0)

(SEND-COMMAND "@STEP 150,0,0,0,0,0,800" 0)

(SEND-COMMAND "@STEP 225,0,0,0-276,-276" 0)

(SEND-COMMAND "@CLOSE" 0))
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(DEFUN FUEL HOSE LOCATION ()
'THIS MOVES THE ROBOT TO THE LOCATION OF THE FUEL HOSE ON THE

TARMAC.

(SEND-COMMAND "#5STEP 225,0,0,0,-1686" 0))

(DEFUN ROBOT GO HOME ()

;ACTIVATES THE ROBOT TO GO TO ITS HOME POSITION.

(SEND-COMMAND "#GOHOME 225,,,,i" 0))

An execution command is defined as a macro syntax. For

example to load a bomb from BLI location on station 2 of the

aircraft and wait for further instructions, the following command

is issued:

COMMAND • LOAD,BOMB,BLI,STATION2,GOHOME,WAIT.

In general the execution commands are macro operators such as:

LOAD (Bomb and missile), UNLOAD (Bomb and missile), GRASP,

RELEASE, AIM?, GOHOME, BASE-LEFT, BASE-RIGHT, SHOULDER-UP,

SHOULDER-DOWN, ELBOW-UP, ELBOW-DOWN, PITCH-UP, PITCH-DOWN,
ROLL-LEFT, ROLL-RIGHT, WAIT, REFUEL.

6.3 A Microblock World Teleoperation

The next application of TOP is the constrained microblock

world problem. The ordinary microblock problem has been solved as

a "pick" and "place" reconfiguration design plan by such systems as

STRIPS [16] and ABSTRIPS [17].

In a telerobotic system, the microblock constraints are more

than the usually assumed structural relationship (i.e.; the order

in which the blocks should be arranged). The problem is over

constrained by simulating the environment of the operation:

painting blocks to different colors, controlling the intensity of

light in the environment, and varying the block configuration with

respect to geometric sizes.



The simulated environment consists of one

supervisor and a single one-arm microbot robot.
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human as a

Based on the

constraint environment, a task-skill matrix was generated and the

individual tasks assigned either to the robot or the human.

The simulation begins with an initial configuration of three

blocks and allows the user to restack at least two of the blocks

and no more than three. Various initial block configurations are

randomly generated or defined by the user. Assignment of a task to

a resource depends on the task-skill matrix selection criteria. It

could be minimum completion time or a minimum expected risk

criterion.

Once the task plan is generated, the plan is executed. This

is done by passing the subtask sequence to the program operators.

Next, an evaluation of the task plan takes place which is in the

form of constraint management. The program, upon successful task

design and execution, displays the next task to be performed by

backtracking through the task-frame hierarchy. The simulation is

repeated by changing task execution parameters using internal

"seeding" (i.e., random numbers are generated by different random

seeds).

6.3.1 Microblock Simulation Results

Twenty simulation runs were replicated for each task to be

performed. Each sequence of tasks used a different same random

seed for randomized design of the job assignment profile. The

results of the experiments are shown on Tables 4-11. The results



show the task completion

teleoperators respectively.

In Table 4, for example,

times for both human and
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robot

during the first run, the human

operator took 5.88 seconds to complete the task. This is a special

example in which the task skill matrix was rated such that the task

took place in a "hazardous" environment. The average completion

and standard deviation times are also given on Table 4. Figures

14-17 show the plots of these task times for each teleoperator. It

is difficult to say precisely which of the operators is better

since the environments in which tasks are performed change with

respect to simulated conditions. Also, the frequency with which

the teleoperators are assigned to a task see Tables 7-10 depend on

the teleoperator rating from task-skill matrix model as well as the

simulated environment. Figures 18-21 show corresponding frequency

plots. For all practical definitions of a teleoperation, it is

better to minimize task assignments to the human especially in high

risk environments. Another observation from the task assignment

frequency plot is that these values can be used to predict the

assignment of tasks. For example, to remove block-2 from block-i

(in the environment which the task is performed), we can predict

that 20% of the human effort and 80% of the robot effort will be

required.
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Table 4 TASK: REMOVE BLOCK-2 FROM BLOCK-I

NO. HUMAN ROBOT

OF TIME TIME

RUNS

1 5.88 0.907

2 0.872 0.864

3 0.144 1.06

4 3.36 0.712

5 3.88 i.i

6 3.72 1.22

7 3.00 0.943

8 2.93 0.i01

9 0.515 1.32

I0 0.936 0.99

ii 1.41 1.18

12 2.03 0.695

13 2.21 3.29

14 1.03 3.6

15 1.4 3.6

16 1.65 3.27

17 2.98 2.88

18 3.77 1.28

19 2.6 1.317

20 2.41 1.57

AVG: 2.33635 1.59495

STD: 1.36915 1.050889
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Table 5 TASK: PUT BLOCK-I ON TABLE

NO. HUMAN ROBOT

OF TIME TIME

RUNS

1 1.9 0.965

2 1.28 0.949

3 0.74 4.32

4 3.12 3.6

5 2.11 3.6

6 4.2 2.97

7 3.03 2.97

8 1.55 1.46

9 0.865 1.09

i0 2.61 1.39

Ii 2.99 1.02

12 1.81 0.89

13 2.88 0.898

14 2.98 1.24

15 1.05 1.21

16 1.25 1.00

17 0.563 1.05

18 2.15 0.964

19 1.39 0.843

20 2.13 0.88

AVG: 2.0299 1.66545

STD: 0.94395 1.095235
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Table 6 TASK: PUT BLOCK-2 ON BLOCK-I

NO. HUMAN ROBOT
OF TIME TIME

RUNS

1 4.42 0.65

2 0.97 0.819

3 0.527 3.45

4 3.09 3.6

5 2.21 3.6

6 1.8 2.91

7 2.26 2.87

8 0.145 1.29

9 2.65 1.74

I0 1.83 1.89

ii 1.99 2.16

12 0.288 0.99

13 0.91 0.841

14 0.849 1.06

15 2.03 1.34

16 0.786 0.933

17 0.648 0.951

18 1.88 1.07

19 0.306 0.897

20 1.31 0.845

AVG: 1.54495 1.6953

STD: 1.055569 1.002854
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Table 7 TASK: PUT BLOCK-3 ON BLOCK-2

NO. HUMAN ROBOT

OF TIME TIME

RUNS

1 1.92 1.69

2 0.419 0.876

3 0.394 3.48

4 3.37 3.6

5 3.43 3.6

6 3.57 3.22

7 2.68 2.85

8 2.55 0.986

9 0.593 1.57

i0 0.13 1.519

ii 0.659 0.645

12 2.31 0.873

13 0.469 0.774

14 1.88 0.87

15 1.02 0.915

16 1.8 1.00

17 2.82 0.901

18 1.42 0.875

19 3.11 1.02

20 1.93 1.05

AVG: 1.8087 1.6157

STD: 1.100917 1.04334
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Table 8 : ASSIGNMENT FREQUENCY TABLE FOR TASK:

REMOVE BLOCK-2 FROM BLOCK-I

NO. HUMAN ROBOT

OF FREQUENCY FREQUENCY

RUNS

1 0 1

2 0 1

3 1 0

4 1 0

5 0 1

6 0 1

7 0 1

8 0 1

9 1 0

I0 1 0

Ii 0 1

12 0 1

13 0 1

14 0 1

15 0 1

16 0 1

17 0 1

18 0 1

19 0 1

20 0 1

TOTAL: 4 16

NOTE: 1 - Assigned to resource with the smallest time



78

Table 9: ASSIGNMENTFREQUENCYTABLE FOR TASK:
PUT BLOCK-I ON TABLE

NO. HUMAN ROBOT
OF FREQUENCY FREQUENCY
RUNS

1 0 1
2 1 1
3 0 0
4 0 0
5 1 0
6 0 1
7 1 1
8 0 1
9 0 0

i0 0 1
ii 0 1
12 0 0
13 1 1
14 1 1
15 1 0
16 0 1
17 0 0
18 0 1
19 1 1
20 0 1

TOTAL: 7 13

NOTE: 1 - ASSIGNED TO RESOURCEWITH THE SMALLEST
TIME.
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Table i0: ASSIGNMENTFREQUENCYTABLE FOR TASK:
PUT BLOCK-2 ON BLOCK-I

NO. HUMAN ROBOT
OF FREQUENCY FREQUENCY

RUNS

1 0 0

2 0 0

3 1 1

4 1 0

5 1 1

6 1 0

7 1 0

8 1 1

9 0 0

I0 1 1

ii 1 1

12 1 1

13 0 0

14 1 0

15 0 0

16 1 0

17 1 0

18 0 0

19 1 1

20 0 0

TOTAL: 13 7

NOTE: 1 - ASSIGNED TO RESOURCE WITH THE SMALLEST

TIME.
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Table Ii: ASSIGNMENT FREQUENCY TABLE FOR TASK:

PUT BLOCK-3 ON BLOCK-2

NO. HUMAN ROBOT

OF FREQUENCY FREQUENCY
RUNS

1 0 1

2 1 0

3 0 1

4 1 0

5 1 0

6 0 1

7 0 1

8 1 0

9 1 0

i0 1 0

Ii 0 1

12 0 1

13 1 0

14 0 1

15 0 1

16 0 1

17 0 1

18 0 1

19 0 1

20 0 1

TOTAL: 7 13

NOTE: 1 - ASSIGNED TO RESOURCE WITH THE SMALLEST
TIME.
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6.4 SUMMARY

In this chapter, we have presented two applications of TOP.

The results obtained in the aircraft turnaround function prove to

be more practical than the microblock problem. It was the

experience gained from the microblock problem that led to the use

of expert system shell (NEXPERT TM4) in TOP. The microblock world

problem however uncovers some issues dealing with teleoperation.

Among these are:

- Repetitive tasks can be assigned to the robot while the

human becomes the supervisor instead of a controller.

- Tasks involving high risk (such as nuclear waste

handling) need to be taught to the robot. Thus, it is

imperative that methodologies for robot acquisition of

human skills be investigated.

The application of TOP to the aircraft turnaround function

specifically addresses the issue of scheduling in an unstructured

environment. The use of rule-based algorithms allow the system to

be domain-independent. Thus, with a proper environment definition

(data base preformating) the TOP can respond to such a new

environment without a possible knowledge "degeneration." With the

ability to reconfigure and replan, scheduling in TOP heuristically

avoids the so called non solvable (NP hard) problems which are

classically inherent in well defined job-shop or flow-shop systems.

4 NEXPERT _ is a treadmark of Neuron Data, Inc.
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CHAPTER 7

PROJECT SUMMARY

7.1 A¢oompllshment

Planning and scheduling in a telerobot system are two complex

tasks because of the human-machine requirements that must be

addressed. In a human system, these issues can well be approached

from behavioral models. On the other hand, robot systems can be

planned algorithmically by exploiting the available computational

techniques.

A teleoperation requires direct cooperation between the agents

involved in the system. Thus, a methodology to achieve such a

cooperation must be developed. In this project, we have developed

a computational approach to assigning tasks to multiagents working

cooperatively in jobs that require a telerobot in the loop. Of

course, our approach allows for such concepts to be applied in a

non-teleoperational domain. We enumerate our accomplishment as

follows:

1. In achieving a human-machine planning that co-exists based on

the system characteristics, we have developed a planner that

exploits human behavior during problem solving as well as

subsuming robotic control models. The planning tool box,

known as a "Deliberate Plan Network (DPN)" uses the principle

of flow mechanism to preserve certain reasoning

characteristics. In the DPN, decision elements try to

evaluate each agent as a decision maker participating in a

problem-solving task. The "best" decision is made using a
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recursive algorithm to explore the DPN for the goal state•

The programmability of DPN is transparent and easy for

replanning. This is so because the fuzzy-based task skill-

matrix can be evaluated on line and nodes or branches in DPN

not satisfying the most eminent task assignment criterion

pruned, re-evaluated, and/or updated.

Considering the fact that a telerobot operates in a hostile

and non-structured environment, task scheduling should respond

to environmental changes. In this regard, we have developed

a general heuristic for scheduling jobs in a human-machine

symbiotic system. Our technique is not to optimize a given

scheduling criterion as in classical job -- and/or flow --

shop problems. For a teleoperation job schedule, criteria are

situation dependent. A criterion selection is fuzzily

embedded in the task-skill matrix computation. However, we

have emphasized goal achievement with minimum expected risk to

the human operator.

Our results with microblock world simulation experiments show

that certain repetitive tasks done by human operators are

easily to be taught to the robot• In such cases, the robot

becomes the task controller and executer while the human

becomes the job supervisor• The experiments further reveal

that in certain (constraint) job environments, especially

where human risk is very high, completion or task execution

time is not as important as long as the robot can do the job

with no risk to the human in the loop.
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7.2 Further Work

Although the concept of teleoperation is not new, the use of

telerobot in a more "intelligent" fashion needs a lot of research.

The planning and scheduling discussions we have presented represent

a subset of several works in the area of telerobotics. If we agree

to look at a telerobot as a human-machine system, then the

following fundamental questions are posted as the premises of the

basic research issues of the future:

1. INTENTIONAL PLANNING: How can a plan understand the agent's

intention?

Problem Statement: In problem-solving systems, the use of

objectives, intentions, and goals are often confused and/or

used interchangeably. Therefore, in building a planner for a

telerobotic environment, these terms show up as constraints.

A methodology for aggregating such constraints and resolving

their behavioral conflicts must be addressed.

2. KNOWLEDGE ORGANIZATION: a) What type of organized knowledge is

needed for the process of deciding what to do in a multiple

agent environment? b) How can knowledge in control, command,

communication and intelligence (C3I) be planned to function

modularly in an unstructured environment with multiple

telerobots at the same time supporting their symbiotic roles?

Problem Statement: A telerobotic system requires a

multifarious knowledge structure. At the conceptual level,

there is the problem of multiple abstraction and the

representation of knowledge. At the contextual level, there
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is problem of commonality; that is, the degree to which an

aspect of a system is common to other parts of the whole

system. This, in a classical sense, can be referred to as a

"symbiotic anomaly". At the experimental level, there is the

problem of recognizing the individual agent problem-solving

strategy and articulating these into a rule set which can

simulate the actual scenario. We must resolve these problems

in developing a useful planner for a telerobot-human

environment.

CONSTRAINT DIRECTED PLANNING: How do we handle constraints and

resolve conflicts in planning a limited resource system?

Problem Statement: Human action is marked by a striking

flexibility that can not be predetermined by a plan. However,

in a telerobot system, a common goal is to be realized by

aggregating and solving problems with multiple goal functions•

Usually, the resources required to realize such goals may be

limited. Various questions to be answered during planning

should attempt to address the basis of allocating tasks to

agents. In particular, how and on what basis should a task be

performed conjunctively?, independently?, or collectively?

REPLANNING AND PLAN DIAGNOSIS: How can a plan reconfigure its

knowledge base and its strategies in an unexpected situation

and for contingency?

Problem Statement: A telerobot domain may require addressing

at least two faulty conditions: a) anomaly; where an actual

event is so alien to the planner's expectations that it falls
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entirely outside the bounds of the contingency set; b)

conjunctivity; when an actual event may require the

cooperation of at least two robots. Thus, any instance where

a planning system is confronted by some situation not covered

by any predefined course of action may require the need of

some sort of adaptive planning. The intent is to deal with

anamolous situations that might arise unexpectedly during life

cycle of the system. The question is, can a distributive

contingency system with self diagnostic capability be built

into a planner with multiple goals?

HUMAN-MACHINE INTERACTION: If plans are defined as "virtual

resources" in situated actions, how are the capabilities of

the human and the robot characterized? What kind of

information processing paradigm is required in a virtually

heterogeneous multi-agent systems?

Problem Statement: A telerobotic work environment requires an

information processing paradigm different from the classical

off-line programming languages used for industrial robots.

Currently, most researchers address this issue from a

functional approach. Typically, the problem of explicit

versus implicit communication dominates most literary

discussions. For a telerobotic system, an "intelligent"

human-machine interaction concept must be pursued. For

example: a) how do we relate actual human psychology to

information (computing) psychology, both from the user and

system level perspective? b) how do we match human physiology
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(ergonomic factors) and mechanical physiology (machine

hardware) in planning a task? c) how are human knowledge,

skills, and rules related to software/hardware integration for

real-time planning? d) since interaction is a style of control

and is accomplished through a language medium, how can a

planning knowledge be codified in a domain-specific style

while preserving generality for applications?
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DPN - A Deliberate Plan Network in TOP

The theory of deliberation is that humans typically have a

purpose in mind when they attempt to execute a defined action. We

use this concept to generalize a case of where multiple agents (not

necessarily humans) have to interact cooperatively during task

execution. In particular, we extend the "deliberate behavior" to

the robotic agents. The robot is taught the same action primitives

through a deliberate plan network. The description of a DPN

follows.

The initial development of a DPN is achieved via context

definition blocks as shown in Fig. A-1. From the task definition

block, the planner takes in the initial task status (similar to

STRIPS concept of initial operator state) with the goal definition

to develop plans. Constraints are constructively posted based on

resource availabilities. The deliberator elements (also known as

bureaucratic fixers) are used to compare the plan goal and the

expected constraints to be encountered. Upon deliberation, the

human agent would use the moderator elements (conflict resolution

program) to relax constraints and perform task assignments. The

operators are similar in context to those used by STRIPS and NOAH.

The task definition block describes the composition of tasks

to be performed. The block "structural task planner" describes the

structural relationship between the tasks. The constraint block

describes the order in which the tasks are to be performed and the

resources required. The "Schedule Activities" block is the program

that converts plans into time phase schedules. The external blocks
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Fig. A-l: Context Definition Blocks for a DPN.
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The operators

For example, the

are "Operators", "Deliberators", and "Moderators".

are the problem solvers or plan executors.

operator

MOVE(object, fposition, nposition)

moves the object from a current position (fposition) to a new

position (nposition) in the desired task configuration space. The

"Deliberators" use some weighted performance measures from the

teleoperator skill matrix to construct task assignments. The

"moderators" are programs for constraint resolutions and

relaxations.

An example of plan deliberation during a task execution is

illustrated in Fig A-2. The "attempt task execution" block

labelled "A" defines the goal and the initial state of the system.

The "verify predicate node" B is a decision node which checks for

prerequisite conditions prior to attempting task execution. If the

verify - predicate is true, the current subgoal achievement is

protected (by flagging) and put into the "agenda" knowledge base.

From then on, the operator designated to execute the subtask (E

block) is searched and the subtask execution takes place at block

L. A return condition to the verify-predicate of block B is to

check for completion of the subtasks required for the goal

achievement.

Should the verify-predicate condition become false, the

moderators and deliberators are used to resolve potential

constraints (block G). Any conflict in task assignment is checked

in block H. A wrong task assignment indicates a subgoal failure
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(block J), and a no feasible assignment is sent directly to the

"delay-action" block K from where the planner looks back to the

verify-predicate block B for other feasible subtasks to be

executed.

The representation of the plan mechanism above is shown as a

reduced skeleton state space network in Fig. A-3. As shown, the

operators and deliberators are active in some nodes. The technique

is to remove all moderators and deliberators and preserve operators

for task execution without failure. The planning heuristic is as

follows:

i. Eliminate loops where moderators and/or deliberators are

active.

2. Apply constraint relaxation algorithms on nodes with
deliberators.

3. Repeat steps 1-2 until only task execution operators are
active.

4. Attempt task execution.

5. If subtask failures are encountered, redefine the task

scenario and go to step 2.

6. Else, protect successful subtasks and put them in task agenda.

7. If the agenda contains all the subtasks for a goal

achievement, schedule task execution.

8. Else, define a new subtask scenario. Go to step i.

The above discussion is shown in Figs. A-4 and A-5 respectively.

An example MULISP syntax for operator, deliberator and moderator is

as follows:

(Defun GOAL ('put-on (a &path b)): goal definition

(Attempt(&path a b)) : operator to attempt

putting block a on b
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Predicates in Nodes B and H.
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(if (verify-p, status),_
fail

(protect status) ))) z

verify current state

configuration,

failure, repeat protect

subgoal.

The DPN plan expansion pragmas is based on lambda procedure as

followsz

(LAMBDA (X Y)

(Apply (# 'Attempt (nu11 x y ))

#' Expand (x y) ))


